Male and Female Sexual Dysfunction : Pathophysiology and Treatment


Sexual Dysfunction
 Introduction
Male sexual dysfunction affects 10–25% of middle-aged and elderly men. Female sexual dysfunction occurs with a similar frequency. Demographic changes, the popularity of newer treatments, and greater awareness of sexual dysfunction by patients and society have led to increased diagnosis and associated health care expenditures for the management of this common disorder. Because many patients are reluctant to initiate discussion of their sex lives, the physician should address this topic directly to elicit a history of sexual dysfunction.

Male Sexual Dysfunction

Physiology of Male Sexual Response
Normal male sexual function requires (1) an intact libido, (2) the ability to achieve and maintain penile erection, (3) ejaculation, and (4) detumescence. Libido refers to sexual desire and is influenced by a variety of visual, olfactory, tactile, auditory, imaginative, and hormonal stimuli. Sex steroids, particularly testosterone, act to increase libido. Libido can be diminished by hormonal or psychiatric disorders or by medications.
Penile tumescence leading to erection depends on the increased flow of blood into the lacunar network accompanied by the complete relaxation of the arteries and corporal smooth muscle. The microarchitecture of the corpora is composed of a mass of smooth muscle (trabecula) which contains a network of endothelial-lined vessels (lacunar spaces). Subsequent compression of the trabecular smooth muscle against the fibroelastic tunica albuginea causes a passive closure of the emissary veins and accumulation of blood in the corpora. In the presence of a full erection and a competent valve mechanism, the corpora become noncompressible cylinders from which blood does not escape.
The central nervous system (CNS) exerts an important influence by either stimulating or antagonizing spinal pathways that mediate erectile function and ejaculation. The erectile response is mediated by a combination of central (psychogenic) and peripheral (reflexogenic) innervation. Sensory nerves that originate from receptors in the penile skin and glans converge to form the dorsal nerve of the penis, which travels to the S2-S4 dorsal root ganglia via the pudendal nerve. Parasympathetic nerve fibers to the penis arise from neurons in the intermediolateral columns of S2-S4 sacral spinal segments. Sympathetic innervation originates from the T-11 to the L-2 spinal segments and descends through the hypogastric plexus.
Neural input to smooth-muscle tone is crucial to the initiation and maintenance of an erection. There is also an intricate interaction between the corporal smooth muscle cell and its overlying endothelial cell lining (Fig. 49-1A). Nitric oxide, which induces vascular relaxation, promotes erection and is opposed by endothelin-1 (ET-1) and Rho kinase, which mediate vascular contraction. Nitric oxide is synthesized from L-arginine by nitric oxide synthase and is released from the nonadrenergic, noncholinergic (NANC) autonomic nerve supply to act postjunctionally on smooth-muscle cells. Nitric oxide increases the production of cyclic 3',5'-guanosine monophosphate (cyclic GMP), which induces relaxation of the smooth muscle (Fig. 49-1B). Cyclic GMP is gradually broken down by phosphodiesterase type 5 (PDE-5). Inhibitors of PDE-5, such as the oral medications sildenafil, vardenifil, and tadalafil maintain erections by reducing the breakdown of cyclic GMP. However, if nitric oxide is not produced at some level, PDE-5 inhibitors are ineffective, as these drugs facilitate, but do not initiate, the initial enzyme cascade. In addition to nitric oxide, vasoactive prostaglandins (PGE1, PGF2) are synthesized within the cavernosal tissue and increase cyclic AMP levels, also leading to relaxation of cavernosal smooth-muscle cells.
Figure 49-1
Pathways that control erection and detumescence. A. Erection is mediated by cholinergic parasympathetic pathways, and nonadrenergic, noncholinergic (NANC) pathways, which release nitric oxide (NO). Endothelial cells also release NO, which induces vascular smooth-muscle cell relaxation, allowing enhanced blood flow, and leading to erection. Detumescence is mediated by sympathetic pathways that release norepinephrine and stimulate -adrenergic pathways, leading to contraction of vascular smooth-muscle cells. Endothelin, released from endothelial cells, also induces contraction. Rho kinase activation via endothelin activity (among others) also contributes to detumescence by alteration of calcium signaling. B. Biochemical pathways of NO synthesis and action. Sildenafil, vardenafil, and tadalafil enhance erectile function by inhibiting phosphodiesterase type 5 (PDE-5), thereby maintaining high levels of cyclic 3',5'-guanosine monophosphate (cyclic GMP). NOS, nitric oxide synthase; iCa2+, intracellular calcium.

Ejaculation is stimulated by the sympathetic nervous system, which results in contraction of the epididymis, vas deferens, seminal vesicles, and prostate, causing seminal fluid to enter the urethra. Seminal fluid emission is followed by rhythmic contractions of the bulbocavernosus and ischiocavernosus muscles, leading to ejaculation. Premature ejaculation is usually related to anxiety or a learned behavior and is amenable to behavioral therapy or treatment with medications such as selective serotonin reuptake inhibitors (SSRIs). Retrograde ejaculation results when the internal urethral sphincter does not close; it may occur in men with diabetes or after surgery involving the bladder neck.
Detumescence is mediated by norepinephrine from the sympathetic nerves, endothelin from the vascular surface, and smooth-muscle contraction induced by postsynaptic -adrenergic receptors and activation of Rho kinase. These events increase venous outflow and restore the flaccid state. Venous leak can cause premature detumescence and is caused by insufficient relaxation of the corporal smooth muscle rather than a specific anatomic defect. Priapism refers to a persistent and painful erection and may be associated with sickle cell anemia, hypercoagulable states, spinal cord injury, or injection of vasodilator agents into the penis.

Erectile Dysfunction

Epidemiology
Erectile dysfunction (ED) is not considered a normal part of the aging process. Nonetheless, it is associated with certain physiologic and psychological changes related to age. In the Massachusetts Male Aging Study (MMAS), a community-based survey of men between the ages of 40 and 70, 52% of responders reported some degree of ED. Complete ED occurred in 10% of respondents, moderate ED occurred in 25%, and minimal ED in 17%. The incidence of moderate or severe ED more than doubled between the ages of 40 and 70. In the National Health and Social Life Survey (NHSLS), which was a nationally representative sample of men and women ages 18–59, 10% of men reported being unable to maintain an erection (corresponding to the proportion of men in the MMAS reporting severe ED). Incidence was highest among men in the 50–59 age group (21%) and among men who were poor (14%), divorced (14%), and less educated (13%).
The incidence of ED is also higher among men with certain medical disorders such as diabetes mellitus, obesity, lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH), heart disease, hypertension, and decreased HDL levels. Smoking is a significant risk factor in the development of ED. Medications used to treat diabetes or cardiovascular disease are additional risk factors (see below). There is a higher incidence of ED among men who have undergone radiation or surgery for prostate cancer and in those with a lower spinal cord injury. Psychological causes of ED include depression, anger, or stress from unemployment or other causes.

Pathophysiology
ED may result from three basic mechanisms: (1) failure to initiate (psychogenic, endocrinologic, or neurogenic); (2) failure to fill (arteriogenic); or (3) failure to store adequate blood volume within the lacunar network (venoocclusive dysfunction). These categories are not mutually exclusive, and multiple factors contribute to ED in many patients. For example, diminished filling pressure can lead secondarily to venous leak. Psychogenic factor frequently coexist with other etiologic factors and should be considered in all cases. Diabetic, atherosclerotic, and drug-related causes account for >80% of cases of ED in older men.

Vasculogenic
The most frequent organic cause of ED is a disturbance of blood flow to and from the penis. Atherosclerotic or traumatic arterial disease can decrease flow to the lacunar spaces, resulting in decreased rigidity and an increased time to full erection. Excessive outflow through the veins, despite adequate inflow, may also contribute to ED. Structural alterations to the fibroelastic components of the corpora may cause a loss of compliance and an inability to compress the tunical veins. This condition may result from aging, increased cross-linking of collagen fibers induced by nonenzymatic glycosylation, hypoxia, or altered synthesis of collagen associated with hypercholesterolemia.

Neurogenic
Disorders that affect the sacral spinal cord or the autonomic fibers to the penis preclude nervous system relaxation of penile smooth muscle, thus leading to ED. In patients with spinal cord injury, the degree of ED depends on the completeness and level of the lesion. Patients with incomplete lesions or injuries to the upper part of the spinal cord are more likely to retain erectile capabilities than those with complete lesions or injuries to the lower part. Although 75% of patients with spinal cord injuries have some erectile capability, only 25% have erections sufficient for penetration. Other neurologic disorders commonly associated with ED include multiple sclerosis and peripheral neuropathy. The latter is often due to either diabetes or alcoholism. Pelvic surgery may cause ED through disruption of the autonomic nerve supply.

Endocrinologic
Androgens increase libido, but their exact role in erectile function remains unclear. Individuals with castrate levels of testosterone can achieve erections from visual or sexual stimuli. Nonetheless, normal levels of testosterone appear to be important for erectile function, particularly in older males. Androgen replacement therapy can improve depressed erectile function when it is secondary to hypogonadism; however, it is not useful for ED when endogenous testosterone levels are normal. Increased prolactin may decrease libido by suppressing gonadotropin-releasing hormone (GnRH), and it also leads to decreased testosterone levels. Treatment of hyperprolactinemia with dopamine agonists can restore libido and testosterone.

Diabetic
ED occurs in 35–75% of men with diabetes mellitus. Pathologic mechanisms are primarily related to diabetes-associated vascular and neurologic complications. Diabetic macrovascular complications are mainly related to age, whereas microvascular complications correlate with the duration of diabetes and the degree of glycemic control (Chap. 338). Individuals with diabetes also have reduced amounts of nitric oxide synthase in both endothelial and neural tissues.

Psychogenic
Two mechanisms contribute to the inhibition of erections in psychogenic ED. First, psychogenic stimuli to the sacral cord may inhibit reflexogenic responses, thereby blocking activation of vasodilator outflow to the penis. Second, excess sympathetic stimulation in an anxious man may increase penile smooth-muscle tone. The most common causes of psychogenic ED are performance anxiety, depression, relationship conflict, loss of attraction, sexual inhibition, conflicts over sexual preference, sexual abuse in childhood, and fear of pregnancy or sexually transmitted disease. Almost all patients with ED, even when it has a clear-cut organic basis, develop a psychogenic component as a reaction to ED.

Medication-Related
Medication-induced ED (Table 49-1) is estimated to occur in 25% of men seen in general medical outpatient clinics. Among the antihypertensive agents, the thiazide diuretics and beta blockers have been implicated most frequently. Calcium channel blockers and angiotensin-converting enzyme inhibitors are less frequently cited. These drugs may act directly at the corporal level (e.g., calcium channel blockers) or indirectly by reducing pelvic blood pressure, which is important in the development of penile rigidity.  Adrenergic blockers are less likely to cause ED. Estrogens, GnRH agonists, H2 antagonists, and spironolactone cause ED by suppressing gonadotropin production or by blocking androgen action. Antidepressant and antipsychotic agents—particularly neuroleptics, tricyclics, and SSRIs—are associated with erectile, ejaculatory, orgasmic, and sexual desire difficulties.
Table 49-1 Drugs Associated with Erectile Dysfunction
Classification
Drugs
Diuretics
Thiazides
Spironolactone
Antihypertensives
Calcium channel blockers
Methyldopa
Clonidine
Reserpine
-Blockers
Guanethidine
Cardiac/anti-hyperlipidemics
Digoxin
Gemfibrozil
Clofibrate
Antidepressants
Selective serotonin reuptake inhibitors
Tricyclic antidepressants
Lithium
Monoamine oxidase inhibitors
Tranquilizers
Butyrophenones
Phenothiazines
H2 antagonists
Ranitidine
Cimetidine
Hormones
Progesterone
Estrogens
Corticosteroids
GnRH agonists
5-Reductase inhibitors
Cyproterone acetate
Cytotoxic agents
Cyclophosphamide
Methotrexate
Roferon-A
Anticholinergics
Disopyramide
Anticonvulsants
Recreational
Ethanol
Cocaine
Marijuana

Although many medications can cause ED, patients frequently have concomitant risk factors that confound the clinical picture. If there is a strong association between the institution of a drug and the onset of ED, alternative medications should be considered. Otherwise, it is often practical to treat the ED without attempting multiple changes in medications, as it may be difficult to establish a causal role for the drug.

Approach to the Patient: Erectile Dysfunction
A good physician-patient relationship helps to unravel the possible causes of ED, many of which require discussion of personal and sometimes embarrassing topics. For this reason, a primary care provider is often ideally suited to initiate the evaluation. A complete medical and sexual history should be taken in an effort to assess whether the cause of ED is organic, psychogenic, or multifactorial (Fig. 49-2). Initial questions should focus on the onset of symptoms, the presence and duration of partial erections, and the progression of ED. A history of nocturnal or early morning erections is useful for distinguishing physiologic from psychogenic ED. Nocturnal erections occur during rapid eye movement (REM) sleep and require intact neurologic and circulatory systems. Organic causes of ED are generally characterized by a gradual and persistent change in rigidity or the inability to sustain nocturnal, coital, or self-stimulated erections.
The patient should be questioned about the presence of penile curvature or pain with coitus. It is also important to address libido, as decreased sexual drive and ED are sometimes the earliest signs of endocrine abnormalities (e.g., increased prolactin, decreased testosterone levels). It is useful to ask whether the problem is confined to coitus with one or other partners; ED arises not uncommonly in association with new or extramarital sexual relationships. Situational ED, as opposed to consistent ED, suggests psychogenic causes. Ejaculation is much less commonly affected than erection, but questions should be asked about whether ejaculation is normal, premature, delayed, or absent. Relevant risk factors should be identified, such as diabetes mellitus, coronary artery disease (CAD), or neurologic disorders. The patient's surgical history should be explored with an emphasis on bowel, bladder, prostate, or vascular procedures. A complete drug history is also important. Social changes that may precipitate ED are also crucial to the evaluation, including health worries, spousal death, divorce, relationship difficulties, and financial concerns.

Figure 49-2
Algorithm for the evaluation and management of patients with ED.


Because ED commonly involves a host of endothelial cell risk factors, men with ED report higher rates of overt and silent myocardial infarction. As such, ED in an otherwise asymptomatic male warrants consideration of other vascular disorders including CAD.
The physical examination is an essential element in the assessment of ED. Signs of hypertension as well as evidence of thyroid, hepatic, hematologic, cardiovascular, or renal diseases should be sought. An assessment should be made of the endocrine and vascular systems, the external genitalia, and the prostate gland. The penis should be carefully palpated along the corpora to detect fibrotic plaques. Reduced testicular size and loss of secondary sexual characteristics are suggestive of hypogonadism. Neurologic examination should include assessment of anal sphincter tone, the bulbocavernosus reflex, and testing for peripheral neuropathy.
Although hyperprolactinemia is uncommon, a serum prolactin level should be measured, as decreased libido and/or erectile dysfunction may be the presenting symptoms of a prolactinoma or other mass lesions of the sella . The serum testosterone level should be measured and, if low, gonadotropins should be measured to determine whether hypogonadism is primary (testicular) or secondary (hypothalamic-pituitary) in origin. If not performed recently, serum chemistries, CBC, and lipid profiles may be of value, as they can yield evidence of anemia, diabetes, hyperlipidemia, or other systemic diseases associated with ED. Determination of serum prostate specific antigen (PSA) should be conducted according to recommended clinical guidelines .
Additional diagnostic testing is rarely necessary in the evaluation of ED. However, in selected patients, specialized testing may provide insight into pathologic mechanisms of ED and aid in the selection of treatment options. Optional specialized testing includes: (1) studies of nocturnal penile tumescence and rigidity; (2) vascular testing (in-office injection of vasoactive substances, penile Doppler ultrasound, penile angiography, dynamic infusion cavernosography/cavernosometry); (3) neurologic testing (biothesiometry-graded vibratory perception; somatosensory evoked potentials); and (4) psychological diagnostic tests. The information potentially gained from these procedures must be balanced against their invasiveness and cost.

Male Sexual Dysfunction: Treatment
Patient Education
Patient and partner education is essential in the treatment of ED. In goal-directed therapy, education facilitates understanding of the disease, results of the tests, and selection of treatment. Discussion of treatment options helps to clarify how treatment is best offered and stratify first- and second-line therapies. Patients with high-risk lifestyle issues, such as smoking, alcohol abuse, or recreational drug use, should be counseled on the role these factors play in the development of ED.

Oral Agents
Sildenafil, tadalafil, and vardenifil are the only approved and effective oral agents for the treatment of ED. These three medications have markedly improved the management of ED because they are effective for the treatment of a broad range of causes, including psychogenic, diabetic, vasculogenic, postradical prostatectomy (nerve-sparing procedures), and spinal cord injury. They belong to a class of medications that are selective and potent inhibitors of PDE-5, the predominant phosphodiesterase isoform found in the penis. They are administered in graduated doses and enhance erections after sexual stimulation. The onset of action is approximately 60–120 min, depending on the medication used and other factors such as recent food intake. Reduced initial doses should be considered for patients who are elderly, taking concomitant alpha blockers, have renal insufficiency, or are taking medications that inhibit the CYP3A4 metabolic pathway in the liver (e.g., erythromycin, cimetidine, ketoconazole, and, possibly, itraconazole and mibefradil), as they may increase the serum concentration of the PDE-5 inhibitors or promote hypotension.
 Testosterone supplementation combined with a PDE-5 inhibitor may be beneficial in improving erectile function in hypogonadal men with erectile dysfunction who are unresponsive to PDE-5 inhibitors alone. These drugs do not affect ejaculation, orgasm, or sexual drive. Side effects associated with PDE-5 inhibitors include headaches (19%), facial flushing (9%), dyspepsia (6%), and nasal congestion (4%). Approximately 7% of men using sildenafil may experience transient altered color vision (blue halo effect), while 6% of men taking tadalafil may experience loin pain. PDE-5 inhibitors are contraindicated in men receiving nitrate therapy for cardiovascular disease, including agents delivered by oral, sublingual, transnasal, or topical routes. These agents can potentiate its hypotensive effect and may result in profound shock. Likewise, amyl/butyl nitrate "poppers" may have a fatal synergistic effect on blood pressure. PDE-5 inhibitors should also be avoided in patients with congestive heart failure and cardiomyopathy because of the risk of vascular collapse. Because sexual activity leads to an increase in physiologic expenditure [5–6 metabolic equivalents (METS)], physicians have been advised to exercise caution in prescribing any drug for sexual activity to those with active coronary disease, heart failure, borderline hypotension, or hypovolemia, and to those on complex antihypertensive regimens.
Although the PDE-5 inhibitors share a common mechanism of action, there are a few differences among the three agents. Having been on the market the longest, sildenafil has the most robust data confirming its activity, safety, and tolerability. It has recently been released for use in pulmonary hypertension as well as ED. Tadalafil is unique in its longer half-life. All three drugs are effective for patients with ED of all ages, severities, and etiologies. While there are pharmacokinetic and pharmacodynamic differences among these agents, clinically relevant differences are not clear.

Androgen Therapy
Testosterone replacement is used to treat both primary and secondary causes of hypogonadism. Androgen supplementation in the setting of normal testosterone is rarely efficacious and is discouraged. Methods of androgen replacement include transdermal patches and gels, parenteral administration of long-acting testosterone esters (enanthate and cypionate), and oral preparations (17 -alkylated derivatives). Transdermal delivery of testosterone using patches or gels (50–100 mg/d) more closely mimics physiologic testosterone levels, but it is unclear whether this translates into improved sexual function. The administration of 200–300 mg intramuscularly every 2–3 weeks provides another option but is far from an ideal physiologic replacement. Oral androgen preparations have the potential for hepatotoxicity and should be avoided. Testosterone therapy is contraindicated in men with androgen-sensitive cancers (e.g., prostate) and may be inappropriate for men with bladder neck obstruction. It is generally advisable to measure PSA before giving androgen. Hepatic function should be tested before and during testosterone therapy.

Vacuum Constriction Devices
Vacuum constriction devices (VCD) are a well-established, noninvasive therapy. They are a reasonable treatment alternative for select patients who cannot take sildenafil or do not desire other interventions. VCD draw venous blood into the penis and use a constriction ring to restrict venous return and maintain tumescence. Adverse events with VCD include pain, numbness, bruising, and altered ejaculation. Additionally, many patients complain that the devices are cumbersome and that the induced erections have a nonphysiologic appearance and feel.

Intraurethral Alprostadil
If a patient fails to respond to oral agents, a reasonable next choice is intraurethral or self-injection of vasoactive substances. Intraurethral prostaglandin E1 (alprostadil), in the form of a semisolid pellet (doses of 125–1000 g), is delivered with an applicator. Approximately 65% of men receiving intraurethral alprostadil respond with an erection when tested in the office, but only 50% of those achieve successful coitus at home. Intraurethral insertion is associated with a markedly reduced incidence of priapism in comparison to intracavernosal injection.

Intracavernosal Self-Injection
Injection of synthetic formulations of alprostadil is effective in 70–80% of patients with ED, but discontinuation rates are high because of the invasive nature of administration. Doses range between 1 and 40 g. Injection therapy is contraindicated in men with a history of hypersensitivity to the drug and in men at risk for priapism (hypercoagulable states, sickle cell disease). Side effects include local adverse events, prolonged erections, pain, and fibrosis with chronic use. Various combinations of alprostadil, phentolamine, and/or papaverine are sometimes used.

Surgery
A less frequently used form of therapy for ED involves the surgical implantation of a semirigid or inflatable penile prosthesis. These surgical treatments are invasive, associated with potential complications, and generally reserved for treatment of refractory ED. Despite their high cost and invasiveness, penile prostheses are associated with high rates of patient and partner satisfaction.

Sex Therapy
A course of sex therapy may be useful for addressing specific interpersonal factors that may affect sexual functioning. Sex therapy generally consists of in-session discussion and at-home exercises specific to the person and the relationship. It is preferable if therapy includes both partners, provided the patient is involved in an ongoing relationship.


Female Sexual Dysfunction
Female sexual dysfunction (FSD) has traditionally included disorders of desire, arousal, pain, and muted orgasm. The associated risk factors for FSD are similar to those in males: cardiovascular disease, endocrine disorders, hypertension, neurologic disorders, and smoking (Table 49-2).
Table 49-2 Risk Factors for Female Sexual Dysfunction
Neurologic disease: stroke, spinal cord injury, Parkinsonism
Trauma, genital surgery, radiation
Endocrinopathies: diabetes, hyperprolactinemia
Liver and/or renal failure
Cardiovascular disease
Psychological factors and interpersonal relationship disorders: sexual abuse, life stressors
Medications
Antiandrogens: cimetidine, spironolactone
Antidepressants, alcohol, hypnotics, sedatives
Antiestrogens or GnRH antagonists
Antihistamines, sympathomimetic amines
Antihypertensives: diuretics, calcium channel blockers
Alkylating agents
Anticholinergics

Epidemiology
Epidemiologic data are limited, but the available estimates suggest that as many as 43% of women complain of at least one sexual problem. Despite the recent interest in organic causes of FSD, desire and arousal phase disorders (including lubrication complaints) remain the most common presenting problems when surveyed in a community-based population.

Physiology of the Female Sexual Response
The female sexual response requires the presence of estrogens. A role for androgens is also likely but less well-established. In the CNS, estrogens and androgens work synergistically to enhance sexual arousal and response. A number of studies report enhanced libido in women during preovulatory phases of the menstrual cycle, suggesting that hormones involved in the ovulatory surge (e.g., estrogens) increase desire.
Sexual motivation is heavily influenced by context, including the environment and partner factors. Once sufficient sexual desire is reached, sexual arousal is mediated by the central and autonomic nervous systems. Cerebral sympathetic outflow is thought to increase desire, while peripheral parasympathetic activity results in clitoral vasocongestion and vaginal secretion (lubrication).
The neurotransmitters for clitoral corporal engorgement are similar to those in the male, with a prominent role for neural, smooth muscle, and endothelial released nitric oxide (NO). A fine network of vaginal nerves and arterioles promote a vaginal transudate. The major transmitters of this complex vaginal response are not certain, but roles for NO and vasointestinal polypeptide (VIP) are suspected. Investigators studying the normal female sexual response have challenged the long-held construct of a linear and unmitigated relationship between initial desire, arousal, vasocongestion, lubrication, and eventual orgasm. Caregivers should consider a paradigm of a positive emotional and physical outcome with one, many, or no orgasmic peak and release.
Although there are the obvious anatomic differences as well as variation in the density of vascular and neural beds in males and females, the primary effectors of sexual response are strikingly similar. Intact sensation is important for arousal. Thus, reduced levels of sexual functioning are more common in women with peripheral neuropathies (e.g., diabetes). Vaginal lubrication is a transudate of serum that results from the increased pelvic blood flow associated with arousal. Vascular insufficiency from a variety of causes may compromise adequate lubrication and result in dyspareunia. Cavernosal and arteriole smooth-muscle relaxation occurs via increased nitric oxide synthase (NOS) activity and produces engorgement in the clitoris and surrounding vestibule. Orgasm requires an intact sympathetic outflow tract; hence, orgasmic disorders are common in female patients with spinal cord injuries.

Approach to the Patient: Female Sexual Dysfunction
Many women do not volunteer information concerning their sexual response. Open-ended questions in a supportive atmosphere are helpful for initiating a discussion of sexual fitness in women who are reluctant to discuss such issues. Once a complaint has been voiced, a comprehensive evaluation should be performed, including a medical history, psychosocial history, physical examination, and limited laboratory testing.
The history should include the usual medical, surgical, obstetric, psychological, gynecologic, sexual, and social information. Past experiences, intimacy, knowledge, and partner availability should also be ascertained. Medical disorders that may impact sexual health should be delineated. These include diabetes, cardiovascular disease, gynecologic conditions, obstetric history, depression, anxiety disorders, and neurologic disease. Medications should be reviewed as they may impact arousal, libido, and orgasm. The need for counseling and life stresses should be identified. The physical examination should assess the genitalia, including clitoris. Pelvic floor examination may identify prolapse or other disorders. Laboratory studies are needed, especially if menopausal status is uncertain. Estradiol, FSH, and LH are usually obtained, and dehydroepiandrosterone (DHEA) should be considered as it reflects adrenal androgen secretion. A complete blood count, liver function assessment, and lipid studies may be useful, if not otherwise obtained. Complicated diagnostic evaluation, such as clitoral Doppler ultrasonography and biothesiometry, require expensive equipment and are of uncertain utility. It is important for the patient to identify which symptoms are most distressing.
The evaluation of FSD previously occurred mainly in a psychosocial context. However, inconsistencies between diagnostic categories based on only psychosocial considerations, and the emerging recognition of organic etiologies, has led to a new classification of FSD. This diagnostic scheme is based on four components that are not mutually exclusive: (1) Hypoactive sexual desire—the persistent or recurrent lack of sexual thoughts and/or receptivity to sexual activity, which causes personal distress. Hypoactive sexual desire may result from endocrine failure or may be associated with psychological or emotional disorders, (2) Sexual arousal disorder—the persistent or recurrent inability to attain or maintain sexual excitement, which causes personal distress, (3) Orgasmic disorder—the persistent or recurrent loss of orgasmic potential after sufficient sexual stimulation and arousal, which causes personal distress, (4) Sexual pain disorder—persistent or recurrent genital pain associated with noncoital sexual stimulation, which causes personal distress. This newer classification emphasizes "personal distress" as a requirement for dysfunction and provides clinicians with an organized framework for evaluation prior to or in conjunction with more traditional counseling methods.

Female Sexual Dysfunction: Treatment

General
An open discussion with the patient is important as couples may need to be educated about normal anatomy and physiologic responses, including role of orgasm in sexual encounters. Physiologic changes associated with aging and/or disease should be explained. Couples may need to be reminded that clitoral stimulation rather than coital intromission may be more beneficial.
Behavioral modification and nonpharmacologic therapies should be a first step. Patient and partner counseling may improve communication and relationship strains. Lifestyle changes involving known risk factors can be an important part of the treatment process. Emphasis on maximizing physical health and avoiding lifestyles (e.g., smoking, alcohol abuse) and medications likely to produce FSD is important (Table 49-2). The use of topical lubricants may address complaints of dyspareunia and dryness. Contributing medications, such as antidepressants, may need to be altered, including the use of medications with less impact on sexual function, dose reduction, medication switching, or drug holidays.

Hormonal Therapy
In postmenopausal women, estrogen replacement therapy may be helpful in treating vaginal atrophy, decreasing coital pain, and improving clitoral sensitivity. Estrogen replacement in the form of local cream is the preferred method, as it avoids systemic side effects. Androgen levels in women decline substantially before menopause. However, low levels of testosterone or DHEA are not effective predictors of a positive therapeutic outcome with androgen therapy. The widespread use of exogenous androgens is not supported by the literature except in select circumstances (premature ovarian failure or menopausal states) and in secondary arousal disorders.

Oral Agents
The efficacy of PDE-5 inhibitors in FDS has been a marked disappointment given the proposed role of nitric oxide-dependent physiology in the normal female sexual response. The use of PDE-5 inhibitors for FSD should be discouraged pending proof that it is effective.

Clitoral Vacuum Device
In patients with arousal and orgasmic difficulties, the option of using a clitoral vacuum device may be explored. This handheld battery-operated device has a small soft plastic cup that applies a vacuum over the stimulated clitoris. This causes increased cavernosal blood flow, engorgement, and vaginal lubrication.

SLIMING CAPSUL
Suplement pelangsing terbaik. Lulus Standard GMP (Good Manufacturing Practice) dan uji tes SGS. Pesan sekarang Juga!!!
sikkahoder.blogspot
ABE CELL
(Jamu Tetes)Mengatasi diabetes, hypertensi, kanker payudara, mengurangi resiko stroke, meningkatkan fungsi otak, dll.
sikkahoder.blogspot
MASKER JERAWAT
Theraskin Acne Mask (Masker bentuk pasta untuk kulit berjerawat). Untuk membantu mengeringkan jerawat.
sikkahoder.blogspot
ADHA EKONOMIS
Melindungi kulit terhadap efek buruk sinar matahari, menjadikan kulit tampak lenih cerah dan menyamarkan noda hitam di wajah.
sikkahoder.blogspot
BIO GLOKUL
Khusus dari tanaman obat pilihan untuk penderita kencing manis (Diabetes) sehingga dapat membantu menstabilkan gula darah
sikkahoder.blogspot


ADVERTISE HERE Ads by Sikkahoder
Body Whitening
Mengandung vit C+E, AHA, Pelembab, SPF 30, Fragrance, n Solk Protein yang memutihkan kulit secara bertahap dan PERMANEN!!
Sikkahoder.blogspot
PENYEDOT KOMEDO
Dengan alat ini, tidak perlu lg memencet hidung, atau bagian wajah lainnya untuk mengeluarkan komedo.
Sikkahoder.blogspot
Obat Keputihan
Crystal-X adalah produk dari bahan-bahan alami yang mengandung Sulfur, Antiseptik, Minyak Vinieill. Membersihkan alat reproduksi wanita hingga kedalam.
Sikkahoder.blogspot
DAWASIR
Obat herbal yang diramu khusus bagi penderita Wasir (Ambeien), juga bermanfaat untuk melancarkan buang air besar dan mengurangi peradangan pada pembuluh darah anus
Sikkahoder.blogspot
TERMOMETER DIGITAL
Termometer digital dengan suara Beep. Mudah digunakan, gampang dibaca dengan display LCD dan suara beep ketika selesai mendeteksi suhu.
Sikkahoder.blogspot


ADVERTISE HERE Ads by Sikkahoder